

Taniya Kapoor

Work Experience

- 2021 2024 **Faculty of Civil Engineering and Geosciences, TU Delft**, *Delft*, *The Netherlands*Doctoral Employee and Teaching Assistant, Advisors: *H Wang, A Núñez, R Dollevoet*Topic: *Physics-inspired machine learning for fundamental structural elements*
 - 2021 Seminar for Applied Mathematics, ETH Zürich, Zürich, Switzerland Master Internship, Host: Siddhartha Mishra, CAMLab Topic: Physics-informed neural networks for fully nonlinear partial differential equations
- 2018 2019 **Department of Mathematics, Indian Institute of Technology Delhi**, *Delhi*, *India*Master Thesis, Host: *Harish Kumar*Topic: *Active flux schemes for hyperbolic conservation laws*

Education

- 2020 2021 Masters in High Performance Scientific Computing, Université de Lille, Lille, France.
- 2017 2019 Masters in Applied Mathematics, South Asian University, Delhi, India.
- 2014 2017 Bachelors in Mathematics, Deshbandhu College, University of Delhi, Delhi, India.

Fellowships, Schlorships and Grant

- 2023 Travel grant for attending CWI Autumn School, Amsterdam, The Netherlands
- 2021 **PhD fellowship** Sorbonne University, France (declined)
- 2021 PhD fellowship University of Twente, The Netherlands (declined)
- 2021 DAAD PhD fellowship RWTH Aachen, Germany (declined)
- 2020 2021 Fully funded CEMPI LABEX fellowship for masters, France
- 2017 2019 Fully funded Merit scholarship for masters, SAARC nations

Research Interests

SciML, Physics-informed machine learning, Partial differential equations, Computational sciences

Publications

- 2024 **T Kapoor**, H Wang, A Núñez, R Dollevoet, <u>Transfer learning for improved generalizability in causality-respecting PINNs for beam simulations. *Engineering Applications of Artificial Intelligence*.</u>
- T Kapoor*, A Chandra*, D M Tartakovsky, H Wang, A Núñez, R Dollevoet, Neural oscillators for generalization of physics-informed machine learning. Proceedings of the 38th AAAI Conference on Artificial Intelligence.
- **T Kapoor**, H Wang, A Núñez, R Dollevoet, Physics-informed neural networks for solving forward and inverse problems in complex beam systems, *IEEE Transactions on Neural Networks and Learning systems*.
- T Kapoor, A Chandra, D M Tartakovsky, H Wang, A Núñez, R Dollevoet, Neural oscillators for generalizing parametric PDEs, Workshop at the 37th conference on Neural Information Processing Systems: Deep Learning for Differential Equations III

- S Kapoor, A Chandra, **T Kapoor**, M Curti, <u>Gradient weighted physics-informed neural networks for capturing shocks in porous media flows</u>, <u>Workshop at the 37th conference on Neural Information Processing Systems: Machine Learning and the Physical Sciences</u>
- 2023 **T Kapoor**, H Wang, A Núñez, R Dollevoet, <u>Physics-informed machine learning for moving load problems</u>, XII International Conference on Structural Dynamics, Delft.
- 2022 **T Kapoor**, H Wang, A Núñez, R Dollevoet, Predicting traction return current in electric railway systems through physics-informed neural networks, *IEEE Symposium Series on Computational Intelligence, Singapore*

Preprint

2023 A Chandra*, **T Kapoor***, B Daniels, M Curti, K Tiels, D M Tartakovsky, E A Lomonova, Neural oscillators for magnetic hysteresis modeling, under review.

Invited Talks

- Neural oscillators for generalization of physics-informed neural networks, Brown University, CRUNCH Seminar, Division of Applied Mathematics, Providence, USA
- 2022 Physics-informed learning for traction return current, TU Delft, Rail Seminar, CITG, Delft, The Netherlands

Contributed Talks

- T Kapoor, A Chandra, D M Tartakovsky, H Wang, A Núñez, R Dollevoet, Neural oscillators for generalization of physics-informed machine learning, Knowledge guided machine learning bridge program AAAI (lightining talk), Vancouver Canada 2024
- 2023 Physics-informed machine learning for moving loads, XII international conference on Structural Engineering, Delft, The Netherlands, 2023
- 2022 Predicting traction return current in electric railway systems through physics-informed neural networks, Symposium series on computational Intelligence, Singapore 2022

Posters

- 2024 **T Kapoor**, A Chandra, D M Tartakovsky, H Wang, A Núñez, R Dollevoet, Neural oscillators for generalization of physics-informed machine learning, <u>AAAI Conference on Artificial Intelligence, Vancouver Canada</u> 2024
- 2024 **T Kapoor**, A Chandra, D M Tartakovsky, H Wang, A Núñez, R Dollevoet, Neural oscillators for generalization of physics-informed machine learning, *Knowledge guided machine learning bridge program AAAI*, Vancouver Canada 2024
- 2023 **T Kapoor**, A Chandra, D M Tartakovsky, H Wang, A Núñez, R Dollevoet, Neural oscillators for generalizing parametric PDEs, *NeurIPS 2023 Workshop DLDE*
- 2023 S Kapoor, A Chandra, **T Kapoor**, M Curti, Gradient weighted physics-informed neural networks for capturing shocks in porous media flows, *NeurIPS 2023 Workshop ML4PS*
- T Kapoor, H Wang, A Núñez, R Dollevoet, Physics-informed neural networks for solving forward and inverse problems in complex Beam Systems, <u>CWI Autumn School Scientific Machine Learning and Dynamical Systems, Amsterdam, The Netherlands.</u>
- 2022 **T Kapoor**, R Molinaro, S Mishra, Physics-informed neural networks for approximating fully nonlinear PDEs, London Mathematical Society Workshop on the Mathematics of Deep Learning.

Skills

Programing Python, MATLAB, PyTorch, TensorFlow, Cuda, MPI, OpenMP Language English (fluent), Hindi (native)

Reviewer Activities

Journals IEEE TNNLS, Engineering with Computers, Thin-Walled Structures, SoftwareX
Conferences ICLR 2024 AI4DiffEqtnsInSci Workshop, NeurIPS DLDE 2023 Workshop, IJCNN, EURODYN

Teaching Activities at TU Delft

Co-supervisor Master thesis: Neural networks infused with physics for beam systems

Supervision Led the development of a project proposal titled 'Physics-Informed Neural Networks for Simulating the

Dynamics of Beam Systems' for the masters course 'Data Science and AI for Engineers' and supervised 9

students.

Material Prepared tutorials and exams for courses: A1, MUDE, Dynamica

Examiner Data Science and AI for Engineers