Publications
Journal Papers
- Taniya Kapoor, Hongrui Wang, Anastasios Stamou*, Kareem El Sayed*, Alfredo Nunez, Daniel M Tartakovsky, Rolf Dollevoet. Neural differential equation-based two-stage approach for generalization of beam dynamics IEEE Transactions on Industrial Informatics(2024)
- Abhishek Chandra, Taniya Kapoor, Mitrofan Curti, Koen Tiels, Elena A. Lomonova. Characterizing nonlinear piezoelectric dynamics through deep neural operator learning Applied Physics Letters(2024)
- Taniya Kapoor, Hongrui Wang, Alfredo Nunez, Rolf Dollevoet. Transfer learning for improved generalizability in causal physics-informed neural networks for beam simulations Engineering Applications of Artificial Intelligence(2024)
- Taniya Kapoor, Hongrui Wang, Alfredo Nunez, Rolf Dollevoet(2023). Physics-informed neural networks for solving forward and inverse problems in complex beam systems IEEE Transactions on Neural Networks and Learning Systems(2023).
Conference Papers
- Taniya Kapoor*, Abhishek Chandra*, Daniel M Tartakovsky, Hongrui Wang, Alfredo Nunez, Rolf Dollevoet. Neural oscillators for generalization of physics-informed machine learning. Proceedings of the 38th AAAI Conference on Artificial Intelligence (2024).
- Taniya Kapoor, Hongrui Wang, Alfredo Núñez, Rolf Dollevoet. Physics-informed machine learning for moving load problems. Eurodyn XII International Conference on Structural Dynamics (2023).
- Taniya Kapoor, Hongrui Wang, Alfredo Núñez, Rolf Dollevoet. Predicting traction return current in electric railway systems through physics-informed neural networks. IEEE Symposium Series on Computational Intelligence (SSCI) (2022).
Workshop Papers
- Taniya Kapoor, Abhishek Chandra, Daniel Tartakovsky, Hongrui Wang, Alfredo Núñez, Rolf Dollevoet. Neural oscillators for generalizing parametric PDEs. NeurIPS 2023 Workshop: The Symbiosis of Deep Learning and Differential Equations III(2023)
- Somiya Kapoor, Abhishek Chandra, Taniya Kapoor, Mitrofan Curti. Gradient weighted physics-informed neural networks for capturing shocks in porous media flows. NeurIPS Workshop: Machine learning and the Physical Sciences(2023).
Preprints
- Chinmay Datar, Taniya Kapoor, Abhishek Chandra, Qing Sun, Iryna Burak, Erik Lien Bolager, Anna Veselovska, Massimo Fornasier, Felix Dietrich. Solving partial differential equations with sampled neural networks (2024)
- Abhishek Chandra*, Taniya Kapoor*, Bram Daniels, Mitrofan Curti, Koen Tiels, Daniel M Tartakovsky, Elena A Lomonova. Neural Oscillators for Magnetic Hysteresis Modeling(2023)
Posters
- Taniya Kapoor, Abhishek Chandra, Daniel Tartakovsky, Hongrui Wang, Alfredo Núñez, Rolf Dollevoet. Neural oscillators for generalizing parametric PDEs. NeurIPS 2023 Workshop: The Symbiosis of Deep Learning and Differential Equations III(2023)
- Somiya Kapoor, Abhishek Chandra, Taniya Kapoor, Mitrofan Curti. Gradient weighted physics-informed neural networks for capturing shocks in porous media flows. NeurIPS Workshop: Machine learning and the Physical Sciences(2023).
- Taniya Kapoor, Hongrui Wang, Alfredo Núñez, Rolf Dollevoet. PINNs for complex beam systems. CWI Autumn School, Amsterdam(2023)
- Abhishek Chandra*, Taniya Kapoor*, Bram Daniels, Mitrofan Curti, Koen Tiels, Daniel M Tartakovsky, Elena A Lomonova. Neural Oscillators for Magnetic Hysteresis Modeling. CWI Autumn School, Amsterdam(2023)
- Taniya Kapoor, Roberto Molinaro, Siddhartha Mishra. Physics Informed Neural Networks for Approximating Fully Nonlinear PDEs. London Mathematical Society Workshop on the Mathematics of Deep Learning(2022).